Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.682
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-38563166

RESUMO

Objective:To analyze the mutation spectrum of 23-site chip newborn deafness genetic screening in Beijing, and to provide basis for genetic counseling and clinical diagnosis and treatment. Methods:The study included 21 006 babies born in Beijing from December 2022 to June 2023. All subjects underwent newborn deafness genetic screening in Beijing Tongren Hospital, covering 23 variants in 4 genes, the GJB2 gene(c.35delG, c.176_191del16, c.235delC, c.299_300delAT, c.109G>A, c.257C>G, c.512insAACG, c.427C>T, c.35insG), SLC26A4 gene(c.919-2A>G, c.2168A>G, c.1174A>T, c.1226G>A, c.1229C>T, c.1975G>C, c.2027T>A, c.589G>A, c.1707+5G>A, c.917insG, c.281C>T), Mt12SrRNA(m.1555A>G, m.1494C>T) and GJB3 gene(c.538C>T). The mutation detection rate and allele frequency were analyzed. Results:The overall mutation detection rate was 11.516%(2 419/21 006), with the GJB2 gene being the most frequently involved at 9.097%(1 911/21 006), followed by the SLC26A4 gene at 2.123%(446/21 006), the GJB3 gene at 0.362%(76/21 006) and Mt12SrRNA at 0.176%(37/21 006). Among the GJB2 genes, c.109G>A and c.235delC mutation detection rates were the highest, with 6.579%(1 382/21 006) and 1.795%(377/21 006), respectively. Of the SLC26A4 genes, c.919-2A>G and c.2168A>G had the highest mutation rates of 1.423%(299/21 006) and 0.233%(49/21 106), respectively. Regarding the allele frequency, GJB2 c.109G>A was the most common variant with an allele frequency of 3.359%(1 411/42 012), followed by the GJB2 c.235delC at 0.897%(377/42 012) and the SLC26A4 c.919-2A>G at 0.719%(302/42 012). Conclusion:23-site chip newborn deafness genetic screening in Beijing showed that GJB2 c.109G>A mutation detection rate and allele frequency were the highest. This study has enriched the epidemiological data of 23-site chip genetic screening mutation profiles for neonatal deafness, which can provide evidence for clinical practice.


Assuntos
Surdez , Perda Auditiva , Lactente , Recém-Nascido , Humanos , Conexinas/genética , Conexina 26/genética , Surdez/genética , Surdez/diagnóstico , Análise Mutacional de DNA , Transportadores de Sulfato/genética , Testes Genéticos , Mutação , Perda Auditiva/genética , Triagem Neonatal , China
2.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474007

RESUMO

Pendrin and prestin are evolutionary-conserved membrane proteins that are essential for normal hearing. Dysfunction of these proteins results in hearing loss in humans, and numerous deafness-associated pendrin and prestin variants have been identified in patients. However, the pathogenic impacts of many of these variants are ambiguous. Here, we report results from our ongoing efforts to experimentally characterize pendrin and prestin variants using in vitro functional assays. With previously established fluorometric anion transport assays, we determined that many of the pendrin variants identified on transmembrane (TM) 10, which contains the essential anion binding site, and on the neighboring TM9 within the core domain resulted in impaired anion transport activity. We also determined the range of functional impairment in three deafness-associated prestin variants by measuring nonlinear capacitance (NLC), a proxy for motor function. Using the results from our functional analyses, we also evaluated the performance of AlphaMissense (AM), a computational tool for predicting the pathogenicity of missense variants. AM prediction scores correlated well with our experimental results; however, some variants were misclassified, underscoring the necessity of experimentally assessing the effects of variants. Together, our experimental efforts provide invaluable information regarding the pathogenicity of deafness-associated pendrin and prestin variants.


Assuntos
Surdez , Mutação de Sentido Incorreto , Humanos , Transportadores de Sulfato , Proteínas/metabolismo , Ânions/metabolismo
3.
Microbiol Res ; 283: 127691, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492364

RESUMO

Saccharomycopsis species are natural organic sulphur auxotrophs. Their genomes do not encode genes for the uptake and assimilation of sulphate and thus these species cannot grow on media lacking e.g. methionine. Due to the similarity between sulphate and selenate, uptake and assimilation of selenate occurs through the same pathway starting from sulphate transporters encoded by the homologs of the SUL1 and SUL2 genes in S. cerevisiae. Lack of these transporters renders Saccharomycopsis species resistant to selenate levels that are toxic to other microorganisms. We used this feature to enrich environmental samples for Saccharomycopsis species. This led to the isolation of S. schoenii, S. lassenensis and a hitherto undescribed Saccharomycopsis species with limited by-catch of other yeasts, mainly belonging to Metschnikowia and Hanseniaspora. We performed growth and predation assays to characterize the potential of these new isolates as predacious yeasts. Most Saccharomycopsis species are temperature sensitive and cannot grow at 37°C; with the exception of S. lassenensis strains. Predation assays with S. schoenii and S. cerevisiae as prey indicated that predation was enhanced at 20°C compared to 30°C. We crossed an American isolate of S. schoenii with our German isolate using marker directed breeding. Viable progeny indicated that both strains are interfertile and belong to the same biological species. S. lassenensis is heterothallic, while S. schoenii and the new Saccharomycopsis isolate, for which we suggest the name S. geisenheimensis sp. nov., are homothallic.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycopsis , Saccharomycopsis/genética , Saccharomyces cerevisiae/genética , Ácido Selênico/metabolismo , Transporte Biológico , Sulfatos , Transportadores de Sulfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Ânions/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G555-G566, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349781

RESUMO

Cystic fibrosis (CF) is a genetic disease caused by the mutations of cystic fibrosis transmembrane conductance regulator (CFTR), the cystic fibrosis transmembrane conductance regulator gene. Cftr is a critical ion channel expressed in the apical membrane of mouse salivary gland striated duct cells. Although Cftr is primarily a Cl- channel, its knockout leads to higher salivary Cl- and Na+ concentrations and lower pH. Mouse experiments show that the activation of Cftr upregulates epithelial Na+ channel (ENaC) protein expression level and Slc26a6 (a 1Cl-:2[Formula: see text] exchanger of the solute carrier family) activity. Experimentally, it is difficult to predict how much the coregulation effects of CFTR contribute to the abnormal Na+, Cl-, and [Formula: see text] concentrations and pH in CF saliva. To address this question, we construct a wild-type mouse salivary gland model and simulate CFTR knockout by altering the expression levels of CFTR, ENaC, and Slc26a6. By reproducing the in vivo and ex vivo final saliva measurements from wild-type and CFTR knockout animals, we obtain computational evidence that ENaC and Slc26a6 activities are downregulated in CFTR knockout in salivary glands.NEW & NOTEWORTHY This paper describes a salivary gland mathematical model simulating the ion exchange between saliva and the salivary gland duct epithelium. The novelty lies in the implementation of CFTR regulating ENaC and Slc26a6 in a CFTR knockout gland. By reproducing the experimental saliva measurements in wild-type and CFTR knockout glands, the model shows that CFTR regulates ENaC and Slc26a6 anion exchanger in salivary glands. The method could be used to understand the various cystic fibrosis phenotypes.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Camundongos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Membrana Celular/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Modelos Teóricos , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Antiporters/genética , Antiporters/metabolismo
5.
Phytomedicine ; 126: 155283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422652

RESUMO

BACKGROUND: Portulacae Herba and Granati Pericarpium pair (PGP) is a traditional Chinese herbal medicine treatment for colitis, clinically demonstrating a relatively favorable effect on relieving diarrhea and abnormal stools. However, the underlying mechanism remain uncertain. PURPOSE: The present study intends to evaluate the efficacy of PGP in treating colitis in mice and investigate its underlying mechanism. METHODS: The protective effect of PGP against colitis was determined by monitoring body weight, colon length, colon weight, and survival rate in mice. Colonic inflammation was assessed by serum cytokine levels, colonic H&E staining, and local neutrophil infiltration. The reversal of intestinal epithelial barrier damage by PGP was subsequently analyzed with Western blot and histological staining. Furthermore, RNA-seq analysis and molecular docking were performed to identify potential pathways recruited by PGP. Following the hints of the transcriptomic results, the role of PGP through the IL-6/STAT3/SOCS3 pathway in DSS-induced colitis mice was verified by Western blot. RESULTS: DSS-induced colitis in mice was significantly curbed by PGP treatment. PGP treatment significantly mitigated DSS-induced colitis in mice, as evidenced by improvements in body weight, DAI severity, survival rate, and inflammatory cytokines levels in serum and colon. Moreover, PGP treatment up-regulated the level of Slc26a3, thereby increasing the expressions of the tight junction/adherens junction proteins ZO-1, occludin and E-cadherin in the colon. RNA-seq analysis revealed that PGP inhibits the IL-6/STAT3/SOCS3 pathway at the transcriptional level. Molecular docking indicated that the major components of PGP could bind tightly to the proteins of IL-6 and SOCS3. Meanwhile, the result of Western blot revealed that the IL-6/STAT3/SOCS3 pathway was inhibited at the protein level after PGP administration. CONCLUSION: PGP could alleviate colonic inflammation and reverse damage to the intestinal epithelial barrier in DSS-induced colitis mice. The underlying mechanism involves the inhibition of the IL-6/STAT3/SOCS3 pathway.


Assuntos
Colite Ulcerativa , Colite , Extratos Vegetais , Punica granatum , Animais , Camundongos , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/metabolismo , Colo/patologia , Citocinas/metabolismo , Peso Corporal , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colite Ulcerativa/tratamento farmacológico , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/farmacologia , Transportadores de Sulfato/uso terapêutico , Antiporters/efeitos adversos , Antiporters/metabolismo
6.
BMC Med Genomics ; 17(1): 55, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378613

RESUMO

BACKGROUND: Gene variants are responsible for more than half of hearing loss, particularly in nonsyndromic hearing loss (NSHL). The most common pathogenic variant in SLC26A4 gene found in East Asian populations is c.919-2A > G followed by c.2168A > G (p.H723R). This study was to evaluate their variant frequencies in patients with NSHL from special education schools in nine different areas of Southwest China's Yunnan. METHODS: We performed molecular characterization by PCR-products directly Sanger sequencing of the SLC26A4 c.919-2AG and c.2168 A > G variants in 1167 patients with NSHL including 533 Han Chinese and 634 ethnic minorities. RESULTS: The SLC26A4 c.919-2A > G variant was discovered in 8 patients with a homozygous state (0.69%) and twenty-five heterozygous (2.14%) in 1167 patients with NSHL. The total carrier rate of the c.919-2A > G variant was found in Han Chinese patients with 4.50% and ethnic minority patients with 1.42%. A significant difference existed between the two groups (P < 0.05). The c.919-2A > G allele variant frequency was ranged from 3.93% in Kunming to zero in Lincang and Nvjiang areas of Yunnan. We further detected the SLC26A4 c.2168 A > G variant in this cohort with one homozygotes (0.09%) and seven heterozygotes (0.60%), which was detected in Baoshan, Honghe, Licang and Pu`er areas. Between Han Chinese group (0.94%) and ethnic minority group (0.47%), there was no statistical significance (P > 0.05). Three Han Chinese patients (0.26%) carried compound heterozygosity for c.919-2A > G and c.2168 A > G. CONCLUSION: These data suggest that the variants in both SLC26A4 c.919-2A > G and c.2168 A > G were relatively less frequencies in this cohort compared to the average levels in most regions of China, as well as significantly lower than that in Han-Chinese patients. These results broadened Chinese population genetic information resources and provided more detailed information for regional genetic counselling for Yunnan.


Assuntos
Surdez , Etnicidade , Proteínas de Membrana Transportadoras , Humanos , Etnicidade/genética , Mutação , Proteínas de Membrana Transportadoras/genética , Grupos Minoritários , China/epidemiologia , Conexinas/genética , Transportadores de Sulfato/genética
7.
Pflugers Arch ; 476(4): 545-554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221598

RESUMO

Secretin is a key hormone of the intestinal phase of digestion which activates pancreatic, bile duct and Brunner gland HCO3- secretion. Recently, the secretin receptor (SCTR) was also found in the basolateral membrane of the beta-intercalated cell (B-IC) of the collecting duct. Experimental addition of secretin triggers a pronounced activation of urinary HCO3- excretion, which is fully dependent on key functional proteins of the B-IC, namely apical pendrin and CFTR and the basolateral SCTR. Recent studies demonstrated that the SCTR knock-out mouse is unable to respond to an acute base load. Here, SCTR KO mice could not rapidly increase urine base excretion, developed prolonged metabolic alkalosis and exhibited marked compensatory hypoventilation. Here, we review the physiological effects of secretin with distinct focus on how secretin activates renal HCO3- excretion. We describe its new function as a hormone for HCO3- homeostasis.


Assuntos
Bicarbonatos , Secretina , Camundongos , Animais , Secretina/metabolismo , Secretina/farmacologia , Membrana Celular/metabolismo , Transportadores de Sulfato/metabolismo , Transporte Biológico , Homeostase , Bicarbonatos/metabolismo
8.
Am J Physiol Cell Physiol ; 326(3): C829-C842, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223928

RESUMO

Loss of function mutations in the SLC26A3 gene cause chloride-losing diarrhea in mice and humans. Although systemic adaptive changes have been documented in these patients and in the corresponding knockout mice, how colonic enterocytes adapt to loss of this highly expressed and highly regulated luminal membrane anion exchanger remains unclear. To address this question, SLC26A3 was deleted in the self-differentiating Caco2BBe colonic cell line by the CRISPR/Cas9 technique. We selected a clone with loss of SLC26A3 protein expression and morphological features indistinguishable from those of the native cell line. Neither growth curves nor development of transepithelial electrical resistance (TEER) differed between wild-type (WT) and SLC26A3 knockout (KO) cells. Real-time qPCR and Western analysis in SLC26A3-KO cells revealed an increase in AE2 expression without significant change in NHE3 expression or localization. Steady-state pHi and apical and basolateral Cl-/HCO3- exchange activities were assessed fluorometrically in a dual perfusion chamber with independent perfusion of luminal and serosal baths. Apical Cl-/HCO3- exchange rates were strongly reduced in SLC26A3-KO cells, accompanied by a surface pH more acidic than that of WT cells. Steady-state pHi was not significantly different from that of WT cells, but basolateral Cl-/HCO3- exchange rates were higher in SLC26A3-KO than in WT cells. The data show that CRISPR/Cas9-mediated SLC26A3 deletion strongly reduced apical Cl-/HCO3- exchange rate and apical surface pH, but sustained a normal steady-state pHi due to increased expression and function of basolateral AE2. The low apical surface pH resulted in functional inhibition of NHE-mediated fluid absorption despite normal expression of NHE3 polypeptide.NEW & NOTEWORTHY SLC26A3 gene mutations cause chloride-losing diarrhea. To understand how colonic enterocytes adapt, SLC26A3 was deleted in Caco2BBe cells using CRISPR/Cas9. In comparison to the wild-type cells, SLC26A3 knockout cells showed similar growth and transepithelial resistance but substantially reduced apical Cl-/HCO3- exchange rates, and an acidic surface pH. Steady-state intracellular pH was comparable between the WT and KO cells due to increased basolateral AE2 expression and function.


Assuntos
Cloretos , Diarreia , Humanos , Animais , Camundongos , Trocador 3 de Sódio-Hidrogênio/genética , Ânions , Enterócitos , Concentração de Íons de Hidrogênio , Transportadores de Sulfato/genética , Antiportadores de Cloreto-Bicarbonato/genética
9.
Sci Rep ; 14(1): 246, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168913

RESUMO

Chronic obstructive pulmonary disease (COPD) is the 3rd leading cause of death worldwide. Cigarette smoke which has approximately 2-3 µg of Cadmium (Cd) per cigarette contributes to the environmental exposure and development and severity of COPD. With the lack of a cadmium elimination mechanism in humans, the contribution of cadmium induced stress to lung epithelial cells remains unclear. Studies on cadmium responsive miRNAs suggest regulation of target genes with an emphasis on the critical role of miRNA-mRNA interaction for cellular homeostasis. Mir-381, the target miRNA in this study is negatively regulated by cadmium in airway epithelial cells. miR-381 is reported to also regulate ANO1 (Anoctamin 1) expression negatively and in this study low dose cadmium exposure to airway epithelial cells was observed to upregulate ANO1 mRNA expression via mir-381 inhibition. ANO1 which is a Ca2+-activated chloride channel has multiple effects on cellular functions such as proliferation, mucus hypersecretion and fibroblast differentiation in inflamed airways in chronic respiratory diseases. In vitro studies with cadmium at a high concentration range of 100-500 µM is reported to activate chloride channel, ANO1. The secretory epithelial cells are regulated by chloride channels like CFTR, ANO1 and SLC26A9. We examined "ever" smokers with COPD (n = 13) lung tissue sections compared to "never" smoker without COPD (n = 9). We found that "ever" smokers with COPD had higher ANO1 expression. Using mir-381 mimic to inhibit ANO1, we demonstrate here that ANO1 expression is significantly (p < 0.001) downregulated in COPD derived airway epithelial cells exposed to cadmium. Exposure to environmental cadmium contributes significantly to ANO1 expression.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , Cádmio/metabolismo , Anoctamina-1/genética , Anoctamina-1/metabolismo , Células Epiteliais/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/genética , Proteínas de Neoplasias/metabolismo , Transportadores de Sulfato/metabolismo , Antiporters/metabolismo
10.
Br J Nutr ; 131(9): 1488-1496, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221821

RESUMO

Iodine and thyroid hormones (TH) transport in the placenta are essential for fetal growth and development, but there is little research focus on the human placenta. The research aimed to investigate iodine and TH transport mechanisms in the human placenta. The placenta was collected from sixty healthy pregnant women. Urinary iodine concentration (UIC), serum iodine concentration (SIC), placenta iodine storage (PIS) and the concentration of serum and placenta TH were examined. Five pregnant women were selected as insufficient intake (II), adequate intake (AI) and above requirements intake (ARI) groups. Localisation/expression of placental sodium/iodide symporter (NIS) and Pendrin were also studied. Results showed that PIS positively correlated with the UIC (R = 0·58, P < 0·001) and SIC (R = 0·55, P < 0·001), and PIS was higher in the ARI group than that in the AI group (P = 0·017). NIS in the ARI group was higher than that in the AI group on the maternal side of the placenta (P < 0·05). NIS in the II group was higher than that in the AI group on the fetal side (P < 0·05). In the II group, NIS on the fetal side was higher than on the maternal side (P < 0·05). Pendrin was higher in the II group than in the AI group on the maternal side (P < 0·05). Free triiodothyronine (r = 0·44, P = 0·0067) and thyroid-stimulating hormone (r = 0·75, P < 0·001) between maternal and fetal side is positively correlated. This study suggests that maternal iodine intake changes the expression of NIS and Pendrin, thereby affecting PIS. Serum TH levels were not correlated with placental TH levels.


Assuntos
Iodo , Estado Nutricional , Placenta , Simportadores , Hormônios Tireóideos , Humanos , Feminino , Gravidez , Iodo/urina , Iodo/metabolismo , Placenta/metabolismo , Adulto , Hormônios Tireóideos/sangue , Hormônios Tireóideos/metabolismo , Simportadores/metabolismo , Transportadores de Sulfato/metabolismo , Transporte Biológico
11.
Am J Physiol Renal Physiol ; 326(2): F202-F218, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059296

RESUMO

Angiotensin II increases apical plasma membrane pendrin abundance and function. This study explored the role of the small GTPase Rac1 in the regulation of pendrin by angiotensin II. To do this, we generated intercalated cell (IC) Rac1 knockout mice and observed that IC Rac1 gene ablation reduced the relative abundance of pendrin in the apical region of intercalated cells in angiotensin II-treated mice but not vehicle-treated mice. Similarly, the Rac1 inhibitor EHT 1864 reduced apical pendrin abundance in angiotensin II-treated mice, through a mechanism that does not require aldosterone. This IC angiotensin II-Rac1 signaling cascade modulates pendrin subcellular distribution without significantly changing actin organization. However, NADPH oxidase inhibition with APX 115 reduced apical pendrin abundance in vivo in angiotensin II-treated mice. Moreover, superoxide dismutase mimetics reduced Cl- absorption in angiotensin II-treated cortical collecting ducts perfused in vitro. Since Rac1 is an NADPH subunit, Rac1 may modulate pendrin through NADPH oxidase-mediated reactive oxygen species production. Because pendrin gene ablation blunts the pressor response to angiotensin II, we asked if pendrin blunts the angiotensin II-induced increase in kidney superoxide. Although kidney superoxide was similar in vehicle-treated wild-type and pendrin knockout mice, it was lower in angiotensin II-treated pendrin-null kidneys than in wild-type kidneys. We conclude that angiotensin II acts through Rac1, independently of aldosterone, to increase apical pendrin abundance. Rac1 may stimulate pendrin, at least partly, through NADPH oxidase. This increase in pendrin abundance contributes to the increment in blood pressure and kidney superoxide content seen in angiotensin II-treated mice.NEW & NOTEWORTHY This study defines a new signaling mechanism by which angiotensin II modulates oxidative stress and blood pressure.


Assuntos
Angiotensina II , Transportadores de Sulfato , Proteínas rac1 de Ligação ao GTP , Animais , Camundongos , Aldosterona/farmacologia , Aldosterona/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Camundongos Knockout , NADPH Oxidases/metabolismo , Transportadores de Sulfato/genética , Superóxidos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
12.
Handb Exp Pharmacol ; 283: 319-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37947907

RESUMO

Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.


Assuntos
Proteínas de Transporte de Ânions , Humanos , Transportadores de Sulfato/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/metabolismo , Ânions/metabolismo , Transporte Biológico
13.
J Am Soc Nephrol ; 35(1): 7-21, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37990364

RESUMO

SIGNIFICANCE STATEMENT: In the kidney, the B1 H + -ATPase subunit is mostly expressed in intercalated cells (IC). Its importance in acid-secreting type A ICs is evident in patients with inborn distal renal tubular acidosis and ATP6V1B1 mutations. However, the protein is also highly expressed in alkali-secreting non-type A ICs where its function is incompletely understood. We demonstrate in Atp6v1b1 knock out mice that the B1 subunit is critical for the renal response to defend against alkalosis during an alkali load or chronic furosemide treatment. These findings highlight the importance of non-type A ICs in maintaining acid-base balance in response to metabolic challenges or commonly used diuretics. BACKGROUND: Non-type A ICs in the collecting duct system express the luminal Cl - /HCO 3- exchanger pendrin and apical and/or basolateral H + -ATPases containing the B1 subunit isoform. Non-type A ICs excrete bicarbonate during metabolic alkalosis. Mutations in the B1 subunit (ATP6V1B1) cause distal renal tubular acidosis due to its role in acid secretory type A ICs. The function of B1 in non-type A ICs has remained elusive. METHODS: We examined the responses of Atp6v1b1-/- and Atp6v1b1+/+ mice to an alkali load and to chronic treatment with furosemide. RESULTS: An alkali load or 1 week of furosemide resulted in a more pronounced hypokalemic alkalosis in male ATP6v1b1-/- versus Atp6v1b1+/+ mice that could not be compensated by respiration. Total pendrin expression and activity in non-type A ICs of ex vivo microperfused cortical collecting ducts were reduced, and ß2 -adrenergic stimulation of pendrin activity was blunted in ATP6v1b1-/- mice. Basolateral H + -ATPase activity was strongly reduced, although the basolateral expression of the B2 isoform was increased. Ligation assays for H + -ATPase subunits indicated impaired assembly of V 0 and V 1 H + -ATPase domains. During chronic furosemide treatment, ATP6v1b1-/- mice also showed polyuria and hyperchloremia versus Atp6v1b1+/+ . The expression of pendrin, the water channel AQP2, and subunits of the epithelial sodium channel ENaC were reduced. CONCLUSIONS: Our data demonstrate a critical role of H + -ATPases in non-type A ICs function protecting against alkalosis and reveal a hitherto unrecognized need of basolateral B1 isoform for a proper H + -ATPase complexes assembly and ability to be stimulated.


Assuntos
Acidose Tubular Renal , Alcalose , Túbulos Renais Coletores , ATPases Vacuolares Próton-Translocadoras , Humanos , Masculino , Camundongos , Animais , Acidose Tubular Renal/genética , Furosemida/farmacologia , Aquaporina 2/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Rim/metabolismo , Alcalose/metabolismo , Transportadores de Sulfato/metabolismo , Isoformas de Proteínas , Álcalis , Túbulos Renais Coletores/metabolismo
14.
Int J Pediatr Otorhinolaryngol ; 176: 111777, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029595

RESUMO

OBJECTIVES: The molecular etiology of non-syndromic hearing loss (NSHL) in Southeastern China (Fujian) has not been precisely identified. our study selected patients with NSHL and analyzed their causative genes, which helped to improve the accuracy of the diagnosis of hereditary hearing loss (HHL) and its treatment. METHODS: 251 unrelated patients who attended the otolaryngology clinic of Fujian Maternal and Child Health Hospital with hearing loss were enrolled to our study. All patients had genetic tests and listening tests, of which 251 were diagnosed with NSHL. In addition, we used whole-exome sequencing (WES) in a patient who has a significant family history of HHL but negative for gene chip testing, as well as in his family members. RESULT: Among of 251 patients, Nucleotide changes were found in 63 cases (25.09%), including 34 located in GJB2(13.5%, including 235delC and 299_300delAT), 13 located in SLC26A4(5.18%, including c.919-2G > A and 2168 A > G), 1 located in GJB3(0.4%,538C > T) and 16 located in mtDNA12SrRNA (6.37%,1555 A > G). In addition, we discuss the process of identifying novel PLS1 mutations from 251 patients. CONCLUSION: Our results demonstrate the conventional deafness gene mutation in 251 NSHL patients in Fujian, China. Compared with the other area of China, we have a lower detection rate, but GJB2 235delC remains the most common mutation in Fujian. In addition, we discuss the process of discovering novel mutation locus for deafness, which provides an understanding for deafness diagnosis and genetic testing.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Criança , Humanos , China , Conexina 26/genética , Conexinas/genética , Surdez/diagnóstico , Surdez/genética , Análise Mutacional de DNA , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação , Transportadores de Sulfato/genética
15.
Eur Arch Otorhinolaryngol ; 281(2): 649-654, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37477685

RESUMO

BACKGROUND: The relationship between the hearing phenotype and the SLC26A4 mutation in enlarged vestibular aqueduct cases has not been fully elucidated. OBJECTIVES: To detect SLC26A4 mutation in a group of cases with enlarged vestibular aqueduct who received cochlear implantation and to analyze the correlation between the SLC26A4 genotype and the progression of deafness. MATERIALS AND METHODS: Twenty-nine enlarged vestibular aqueduct patients were selected. Using the Sanger sequence to analyze SLC26A4 gene mutations. The 29 cases were divided into group A (carrying the c.919-2A > G mutation) and group B (not carrying the c.919-2A > G mutation). The difference in the duration of deafness was analyzed between the two groups. RESULTS: The detection rate of the c.1174A > T mutation in the postlingual deafness group was 37.5%, higher than that in the prelingual deafness group (0%). The difference in the duration of deafness between groups A and B was not statistically significant by the Mann-Whitney U test (p > 0.05). CONCLUSIONS: The correlation between the SLC26A4 genotype and the duration of deafness in cases with enlarged vestibular aqueduct is not yet clear. However, the c.1174A > T mutation may be linked to delayed hearing loss and the progression of deafness may be relatively slow in some cases of c.919-2A > G mutation.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Aqueduto Vestibular , Humanos , Proteínas de Membrana Transportadoras/genética , Perda Auditiva Neurossensorial/genética , Surdez/genética , Mutação , Aqueduto Vestibular/diagnóstico por imagem , Transportadores de Sulfato/genética
16.
Pflugers Arch ; 476(4): 533-543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110744

RESUMO

Pendrin (SLC26A4) is an anion exchanger from the SLC26 transporter family which is mutated in human patients affected by Pendred syndrome, an autosomal recessive disease characterized by sensoneurinal deafness and hypothyroidism. Pendrin is also expressed in the kidney where it mediates the exchange of internal HCO3- for external Cl- at the apical surface of renal type B and non-A non-B-intercalated cells. Studies using pendrin knockout mice have first revealed that pendrin is essential for renal base excretion. However, subsequent studies have demonstrated that pendrin also controls chloride absorption by the distal nephron and that this mechanism is critical for renal NaCl balance. Furthermore, pendrin has been shown to control vascular volume and ultimately blood pressure. This review summarizes the current knowledge about how pendrin is linking renal acid-base regulation to blood pressure control.


Assuntos
Rim , Néfrons , Animais , Camundongos , Humanos , Pressão Sanguínea/fisiologia , Transportadores de Sulfato , Rim/metabolismo , Néfrons/metabolismo , Cloreto de Sódio , Cloretos/metabolismo , Proteínas de Transporte de Ânions/genética
17.
PeerJ ; 11: e16558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111663

RESUMO

Thousands of genes are expressed in the testis of mice. However, the details about their roles during spermatogenesis have not been well-clarified for most genes. The purpose of this study was to examine the effect of Slc26a1 deficiency on mouse spermatogenesis and male fertility. Slc26a1-knockout (KO) mice were generated using CRISPR/Cas9 technology on C57BL/6J background. We found no obvious differences between Slc26a1-KO and Slc26a1-WT mice in fertility tests, testicular weight, sperm concentrations, or morphology. Histological analysis found that Slc26a1-KO mouse testes had normal germ cell types and mature sperm. These findings indicated that Slc26a1 was dispensable for male fertility in mice. Our results may save time and resources by allowing other researchers to focus on genes that are more meaningful for fertility studies. We also found that mRNAs of two Slc26a family members (Slc26a5 and Slc26a11) were expressed on higher mean levels in Slc26a1-KO total mouse testes, compared to Slc26a1-WT mice. This effect was not found in mouse GC-1 and GC-2 germ cell lines with the Slc26a1 gene transiently knocked down. This result may indicate that a gene compensation phenomenon was present in the testes of Slc26a1-KO mice.


Assuntos
Antiporters , Fertilidade , Sêmen , Transportadores de Sulfato , Animais , Masculino , Camundongos , Fertilidade/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatogênese/genética , Testículo/metabolismo , Transportadores de Sulfato/genética , Antiporters/genética
18.
Proc Natl Acad Sci U S A ; 120(47): e2307551120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37967223

RESUMO

In cystic fibrosis (CF), defects in the CF transmembrane conductance regulator (CFTR) channel lead to an acidic airway surface liquid (ASL), which compromises innate defence mechanisms, predisposing to pulmonary failure. Restoring ASL pH is a potential therapy for people with CF, particularly for those who cannot benefit from current highly effective modulator therapy. However, we lack a comprehensive understanding of the complex mechanisms underlying ASL pH regulation. The calcium-activated chloride channel, TMEM16A, and the anion exchanger, SLC26A4, have been proposed as targets for restoring ASL pH, but current results are contradictory and often utilise nonphysiological conditions. To provide better evidence for a role of these two proteins in ASL pH homeostasis, we developed an efficient CRISPR-Cas9-based approach to knock-out (KO) relevant transporters in primary airway basal cells lacking CFTR and then measured dynamic changes in ASL pH under thin-film conditions in fully differentiated airway cultures, which better simulate the in vivo situation. Unexpectantly, we found that both proteins regulated steady-state as well as agonist-stimulated ASL pH, but only under inflammatory conditions. Furthermore, we identified two Food and Drug Administration (FDA)-approved drugs which raised ASL pH by activating SLC26A4. While we identified a role for SLC26A4 in fluid absorption, KO had no effect on cyclic adenosine monophosphate (cAMP)-stimulated fluid secretion in airway organoids. Overall, we have identified a role of TMEM16A in ASL pH homeostasis and shown that both TMEM16A and SLC26A4 could be important alternative targets for ASL pH therapy in CF, particularly for those people who do not produce any functional CFTR.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mucosa Nasal/metabolismo , Concentração de Íons de Hidrogênio , Mutação , Mucosa Respiratória/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
20.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686084

RESUMO

The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.


Assuntos
Fibrose Cística , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Anoctaminas , Proteínas de Membrana Transportadoras , Transportadores de Sulfato/genética , Antiporters
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...